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Impact of El Niño and Logging
on Canopy Tree Recruitment

in Borneo
L. M. Curran,1,2* I. Caniago,3 G. D. Paoli,1 D. Astianti,4

M. Kusneti,5 M. Leighton,6 C. E. Nirarita,7 H. Haeruman8

Dipterocarpaceae, the dominant family of Bornean canopy trees, display the
unusual reproductive strategy of strict interspecific mast-fruiting. During
1986–99, more than 50 dipterocarp species dispersed seed only within a 1- to
2-month period every 3 to 4 years during El Niño–Southern Oscillation events.
Synchronous seed production occurred across extensive areas and was essential
for satiating seed predators. Logging of dipterocarps reduced the extent and
intensity of these reproductive episodes and exacerbated local El Niño condi-
tions. Viable seed and seedling establishment have declined as a result of
climate, logging, and predators. Since 1991, dipterocarps have experienced
recruitment failure within a national park, now surrounded by logged forest.

Global climatic cycles, such as El Niño–South-
ern Oscillations (ENSO), affect diverse ecolog-
ical processes including community dynamics
and landscape disturbances in tropical regions
(1). Dipterocarpaceae, a monophyletic group
of trees (2), dominate low- to mid-elevation
tropical forests in Southeast Asia and can
contribute $70% of canopy biomass (3, 4).
Of the 257 species on the island of Borneo,
most are insect-pollinated, obligate outcrossers
that flower asynchronously on supra-annual cy-
cles (5). Dipterocarps produce single-seeded
fruits; are dispersed by wind, water, or gravity;
and germinate within days of dispersal. Primary

or secondary dispersal agents have not been
documented (4, 6).

Mast-fruiting, the supra-annual production
of large seed crops interspersed by irregular
periods of low seed production, has been chal-
lenged as a distinct biological phenomenon (7).
Therefore, the geographic, taxonomic, and tem-
poral extent of synchronous reproduction in
plants must be quantified to address these
claims (7, 8). Our 14-year investigation tests
assertions that Bornean dipterocarps display
mast-fruiting over large spatial scales (9). Five
dipterocarp genera and 54 sympatric diptero-
carp species were monitored for fruit produc-
tion, seed damage, and seedling establishment
(10) across two watersheds (15 km2) within
Gunung Palung National Park (GPNP; 90,000
ha), West Kalimantan (146,760 km2; Indone-
sian Borneo).

To assess the logging impact on diptero-
carp recruitment across West Kalimantan, we
also conducted 3 years of field research with-
in 12 logging concessions, compiled a decade
of logging records across all 72 timber con-
cessions, collected dipterocarp seed export
data covering a 30-year period, digitized land
use maps, and assessed Landsat TM images
of the GPNP region from 1988 to 1998.
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These data were combined with 30 years of
global and regional climatic data to examine
the effects of ENSO cycles on dipterocarp
seed production. The Multivariate ENSO In-
dex (MEI) is based on six climatic variables
recorded over the tropical Pacific (sea-level
pressure, zonal and meridional components
of the surface wind, sea surface temperature,
surface air temperature, and total cloudiness
fraction of the sky) (11).

From 1986 to 1999, four reproductive ep-
isodes were detected with an average inter-
mast interval of 3.7 years (60.3; annual co-
efficient of variation 5 222%) (Fig. 1A). All
fruiting episodes, with the possible exception
of one extremely minor event in 1994, oc-
curred during ENSO years. Seed export
records from 1969 to 1999 document that
periods of high dipterocarp seed production
across West Kalimantan also were correlated
with ENSO years (P 5 0.024) (Fig. 1B). Our
field surveys confirm that dipterocarp fruit
production may occur synchronously across
much of this region during ENSO (4). Sig-
nificantly greater seed exports in ENSO ver-
sus non-ENSO years (P 5 0.006) document
the spatial scale of mast events and confirm
the periodicity of seed production (3.0 6 0.3
to 5.2 6 1.0 years) monitored in the park
(Fig. 1A). A similar 3.5- to 5.6-year climatic
periodicity corresponding to ENSO has also
been documented with 272 years of dendro-
climatic reconstruction by using Indonesian
teak growth rings (12). Synchronous repro-
duction across this region occurs on irregular
3- to 6-year intervals.

Climatic conditions associated with
ENSO provide an irregular supra-annual, re-
gional cue initiating asynchronous, wide-
spread flowering in Bornean Dipterocar-
paceae. In West Kalimantan, the onset of
ENSO cycles is marked by an extreme reduc-
tion in June to September rainfall, and the
MEI (11) in these months preceding flower-
ing is positively correlated with seed produc-
tion (P 5 0.04; 10,000 permutations). How-
ever, a composite MEI value, over the full
5-month flowering and fruit maturation peri-
od (September through February), best pre-
dicts the magnitude of dipterocarp seed pro-
duction from 1969 to 1997 (P 5 0.012, 10,000
permutations) (Fig. 1B). Thus, ENSO condi-
tions not only trigger dipterocarp flowering, but
ENSO characteristics appear to influence re-
gional seed production and recruitment.

Within the 15-km2 area sampled, nearly
every dipterocarp species that was distributed
over a variety of bedrock materials, and two
watersheds, produced seed in each major
event (for example, 1991) (Fig. 2, A to D).
Forty-eight sympatric dipterocarp species in
five genera, and 80 to 93% of all dipterocarp
individuals [.49-cm diameter at breast
height (DBH)] spanning an elevational gra-
dient [15 to 1000 m above sea level (asl)],

participated in the 1987 and 1991 mast events
(4). Over 94% of all viable seed fell in 6
weeks in each of the five reproductive epi-
sodes (Fig. 1A). In 1987 and 1991, lowland
viable seedfall was 25 to 30 kg ha21 week21

(dry mass) with viable seed production for
each mast event reaching 155.9 kg ha21

(6 37.2) and 195.9 kg ha21 (6 30.9), respec-
tively. For all other years combined, viable
seed production averaged only 3.3 kg ha21

year21 (62.1; n 5 11). Canopy tree seed
production was limited to these supra-annual
events. This system, with temporally concen-
trated fruitfall, broad species participation,
and widespread geographic involvement, is
the only documented case of “strict interspe-
cific masting” (13, 14).

Of the several hypotheses to explain plant
reproductive synchrony (7–9, 13–16), seed-
predator satiation appears to be a major factor
maintaining synchronous seedfall in the
Bornean Dipterocarpaceae (13). Pre- and
postdispersal seed predation by invertebrate
and vertebrate seed predators impart the se-
lective force that may explain the mainte-
nance of synchronous fruitfall across taxa and
regions (4, 6). Several nomadic vertebrates
(4) and $25 insect species (17) depend on
dipterocarp seed for growth and reproduc-
tion. Seedling establishment is a major bot-

tleneck in dipterocarp recruitment (6). In mi-
nor or localized fruiting events, seed preda-
tors destroy a significantly greater proportion
of seeds than in major regional events (4).
Regional synchronous seed production is crit-
ical for this reproductive strategy to be suc-
cessful; nomadic seed predators move across
the landscape to feed on dipterocarp seed (4,
6). Predator satiation occurs across the land-
scape rather than within a local site (4, 6), but
otherwise conforms to Janzen’s predator-sa-
tiation hypothesis (9, 16). Without sufficient
quantity and spatial extent of seed produc-
tion, vertebrates may concentrate in specific
areas and can destroy all seed produced in a
local stand (4).

Given the spatiotemporal scale of this in-
terspecific mast-fruiting and the dynamics of
seed predators, commercial logging is ex-
pected to have both direct and indirect effects
on the mast-fruiting dipterocarp landscape.
These effects may occur at the logging con-
cession and in nonlogged, protected forests.
Current logging practices may disrupt the
dipterocarp reproductive response, and thus
seedling recruitment, in at least three ways:
by (i) reducing the local density and biomass
of mature trees, (ii) reducing the spatial ex-
tent of participation in a mast, and (iii) alter-
ing responsiveness to ENSO by disrupting

Fig. 1. Dipterocarp fruit-
fall and ENSO events.
(A) Total monthly fruit-
fall (green) of all seed
with viable or undam-
aged ripe seed (black)
per square meter (mean
6 SEM) arriving in traps
(73.4 m2) monitored over
150 months. ENSO years
are indicated in blue.
Viable seed (26 dip-
terocarp spp; five gen-
era) was present during
40 (6.2%) of the 644
weeks. (B) Regional dip-
terocarp seed exports
were correlated with the
Multivariate ENSO Index
(MEI). MEI is based on six
climatic variables re-
corded over the tropical
Pacific (11). The MEI is
calculated as the first
unrotated principal
component of all six ob-
served fields combined
and computed separate-
ly for each bimonthly
period (December–Janu-
ary, January–February,
. . . ). Red bars indicate ENSO years, blue bars indicate La Niña events, and yellow circles depict seed export
levels (hatched line is mean seed production for all years). Dipterocarp seed export records were compiled
from forestry archives. Differences between ENSO (5.06 3 106 kg) and non-ENSO (0.72 3 106 kg) mean
seed production levels were significant (P 5 0.007 in 10,000 permutations). ENSO years are counted
conservatively as both years in a sequence. Seed production greater than the mean across all 31 years
(.2.96 3 106 kg) occurred in 8 years, of which 7 years were associated with ENSO events (P 5 0.024 in
10,000 permutations). The 1998 value (green circle) is excluded from MEI calculations because the seed
market crashed (0.16 3 106 kg).
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edaphic conditions or causing extended
drought stress.

Dipterocarps contribute over 85% of In-
donesia’s timber exports, generating as much
as U.S. $6 billion in annual export revenue,
and Kalimantan provided ;60% of Indone-
sia’s exports (18, 19). From 1987 to 1997,
West Kalimantan logging concessions deliv-
ered 22.4 3 106 m3 of logs to industries [(3.6
to 1.7) 3 106 m3 year21]. The 36 mechanized
concessions surveyed transported a mean of
54.3 m3 ha21 year21 (62.7) of logs (taxed at
the mill) and dipterocarps were 88 to 96% of
production volume (19). Other Bornean sites
report similar extraction levels (87 to 104 m3

ha21), with only ;40 to 55% of actual felled
volumes recorded at the mill (20). This in-
tense logging has greatly reduced the regen-
eration capacity of dipterocarp forests.

Uncontrolled logging has destroyed most
reproductive dipterocarps in harvested stands.
Though forestry regulations permit 56 to 72%
of commercial standing volume (reported by
the company) to be harvested, the 12 timber
companies observed on-site logged any
healthy, accessible dipterocarp adult in fell-
ing blocks (19). In a pre- and postlogging
experiment, we monitored dipterocarp repro-
duction in a logging concession during the
1991 mast-fruiting (21). This site was har-
vested 1 year later. Fifteen dipterocarp trees
per hectare (basal area 8.0 m2 ha21) were
felled, and an additional 7.5 trees ha21 (4.4
m

2
ha21) were damaged, killed, or defective.

Only 0.8 trees ha21 of undamaged reproduc-
tive dipterocarps (3%) remained (21). To de-
termine the longer term potential for diptero-
carp regeneration after logging, we conduct-
ed a separate study throughout a 100-ha area
that was logged 8 years before the 1991
mast-fruiting (6, 22). Even with 8 years to
recover from logging, few dipterocarp trees
were reproductive in 1991 (5.8 trees ha21;
2.2 m2 ha21 or an 83% reduction from pre-
harvest control levels: 25.5 trees ha21; 13.0
m2 ha21) (6). Dipterocarp seedling produc-
tion was only 15% of the unlogged control.
Thus, logging has considerably reduced dip-
terocarp seed production and regeneration in
logged-over forests for at least a decade.

Logging has fragmented a once-contigu-
ous expanse of dipterocarp forest and thus
disrupted regional reproductive response dur-
ing mast events. From 1968 to 1998, 72
timber concessions once occupied as much as
79.2% (7.3 3 106 ha) of West Kalimantan’s
forested land. The average area of a mecha-
nized operation was 111,319 ha (68883)
(19). During their lease, companies harvest
57% of the forested area in a patchwork of
felling sites distributed throughout the con-
cession (19). Subtracting highly degraded ar-
eas (roads, log yards, and camps), fully 77 to
87% of the area is affected (19). Most impor-
tantly, since 1992, licenses have been granted

to establish plantations of nonnative mono-
cultures in 1.2 3 106 ha of logged or second-
ary forests (19). Forest conversion has oc-
curred without regional planning and has cre-
ated a mosaic of degraded, logged-over areas
and nonnative monocultures surrounding pro-
tected areas including GPNP.

Although the ENSO-associated conditions
that influence dipterocarp fruit production re-
main ambiguous (23), changes in rainfall and
local climate are expected to affect their phe-
nology, seed production, and seedling estab-
lishment. The severity of ENSO-associated
droughts has increased significantly in West
Kalimantan over the past two decades (P ,
0.05), even excluding the intense 1997–98
ENSO (24). Reduced rainfall inception and
moisture-retention capacity have been docu-
mented in these logged forests (25) and may
exacerbate the local impact of sharp declines
in regional rainfall during ENSO (24). In
West Kalimantan, catastrophic droughts cou-
pled with large-scale, anthropogenic forest
fires have been recorded in every ENSO
event since 1991 after intensive logging and

especially since plantation clearing began
(24, 26). Moreover, at least 80% of the 1997–
98 ENSO-associated fires across Indonesia
(primarily Kalimantan) were caused by log-
ging and plantation firms (18). Thus, logging
and associated plantations appear to influence
local ENSO conditions.

Logging has reduced the spatial participa-
tion and intensity of masting through its ef-
fects on regional dipterocarp density, distri-
bution, seed production, and climatic condi-
tions and, as a result, has influenced diptero-
carp reproductive synchrony and seedling
recruitment elsewhere—even within GPNP.
After the 1991 mast, 42.3 and 61.5% of
dipterocarp species initiated fruit production
in 1994 and 1995, respectively, but only 0.8
and 2.3% of initial fruit production was via-
ble. Both values are significantly lower than
either the 1987 or the 1991 mast (P ,
0.0001) (Fig. 1A). The 1990–95 ENSO was
possibly the longest on record (27) (Fig. 1B).
Thus, dipterocarp seed production may have
been altered, triggering two minor consecu-
tive events in 1994 and 1995. Then a major

Fig. 2. Synchrony of diptero-
carp fruitfall across various
scales in 1991. Traps (146.9
m2) were sampled weekly.
(A) Total lowland seed pro-
duction (mean 6 SEM
week21). All 26 lowland
dipterocarp species that
reach adult size in mid-story,
canopy, or emergent strata
produced seed. Numbers of
species arriving in traps are
indicated above bars. (B)
Production in three low-
land habitats with distinc-
tive dipterocarp communi-
ties (mean 6 SEM week21):
(■) alluvium 15 to 50 m
asl; (}) sedimentary 50 to
150 m asl; (F) granite 150
to 300 m asl. All pairwise
cross-correlation compari-
sons were maximally cor-
related with a lag of zero
weeks (each r $ 0.895,
each Bonferroni P # 0.002
in 10,000 permutations).
(C) Production in two wa-
tersheds (mean 6 SEM
week21). Seedfall was max-
imally correlated with a lag
of zero weeks (cross-corre-
lation r 5 0.972 6 0.277, P
, 0.0001 in 10,000 per-
mutations). (D) Production
by the 11 most abundant
species (mean week21).
Species’ seed dry mass
range 0.15 to 6.0 g. Seed-
fall measures were maxi-
mally cross-correlated at a mean lag of 0.07 6 0.17 weeks. Of the 55 comparisons, 19 were maximally
correlated with a lag of zero weeks, 11 of which were significant (each Bonferroni P # 0.0009); 43
comparisons were maximally correlated within a 1-week lag, 21 of which were significant. The
least-synchronous of these 11 species, Shorea gibbosa Brandis (�), demonstrated a mean lag to other
species of only 1.9 weeks.
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fruiting event occurred in 1998. Given the
lapse in substantial fruit production, we ex-
pected the 1998 mast to produce large seed
crops. Although 73% of dipterocarp species
attempted to mature fruit, viable seed was
significantly lower than in 1987 and in 1991
(P 5 0.0018 and P 5 0.0003, respectively)
(Fig. 1A). Catastrophic drought and smoke
from nearby forest fires may have contributed
to this off-site reduction in productivity
through a combination of factors including
pollination failure and water and nutrient
stress. Across West Kalimantan, seed exports
also were greatly reduced in 1995 and almost
failed completely in 1998—indicating poten-
tial large-scale, synergistic impacts of ENSO,
logging, and plantations (Fig. 1B).

A decade of dipterocarp logging and plan-
tation conversion in Kalimantan has reduced
protected forests to islands of relatively high
seed density. Over 2 3 105 ha of forest
surrounding GPNP have been degraded by

logging, plantations, and fire in 1994–95 and
1997–98. During recent mast-fruiting events,
this protected site has become a relatively
concentrated source of dipterocarp seed in a
matrix of logged forest or nonnative mo-
nocultures with marginal dipterocarp seed
production. In 1998, vertebrate seed preda-
tion was significantly greater than in previous
mast events (Fig. 3), reflecting an increase in
the local densities of seed predators. Degrad-
ed areas probably can no longer support ver-
tebrate seed predators. At GPNP, the timing
of vertebrate seed predation also differed
from 1987 and 1991, as seed was destroyed
throughout seedfall, not just in the tails of the
seedfall distribution (Fig. 3). Within GPNP,
seed predators had a significant negative im-
pact on seedling production in the 1995 and
1998 mast events.

The proportion of dipterocarp species pro-
ducing viable seed also was altered. In 1998,
only 34.6% of the species produced viable seed
and just two species contributed 86.7% of the
total production. Despite extensive sampling
across large lowland areas in three ecosystems
(2430 m2 across ;3 km2) (10), 4 months after
this fruitfall, new dipterocarp seedlings were
not found. This contrasts with 155,824 diptero-
carp seedlings ha21 (636,764) (26 of 26 spp.)
recorded in the lowlands 3 months after fruitfall
in 1991, at which time 18,941 seedlings ha21

(63866; 21 of 26 spp.) had survived from the
1987 mast (4, 6). Given these infrequent
reproductive events, a decade of widespread
regeneration failure of the dominant canopy
trees will alter species’ interactions and com-
munity dynamics.

That dipterocarp reproductive success is
highly correlated with ENSO suggests that
the frequency, duration, or intensity of
ENSO-associated conditions experienced in
this region are critical for dipterocarp recruit-
ment. Land use may either alter ENSO-asso-
ciated conditions or intensify their local im-
pact (26, 27). Given the spatial scale of mast-
fruiting synchrony and necessity for predator
satiation, regional logging and especially
subsequent conversion to plantations affects
Dipterocarpaceae and their seed predators
even within a large national park. Diptero-
carp populations may respond to altered cli-
matic patterns with more frequent, low fruit
production or with asynchronous fruiting,
both of which will affect levels of seed pre-
dation and viable seed. Alternatively, repro-
ductive failure could result from the inability
to satiate seed predators coupled with
drought-induced seed or seedling mortality.
The long-term dynamics of both dipterocarps
and their seed predators remain complex and
unstable.

Gunung Palung may be the only national
park remaining in Indonesian Borneo that
still contains large areas of nondegraded,
lowland dipterocarp forest. Despite three

mast-fruiting attempts in 8 years, $48 spe-
cies of canopy trees have not produced ade-
quate seedling regeneration since 1991. This
reproductive strategy appears particularly
vulnerable to disruption. Degradation of
dipterocarp forests will have repercussions
both in Bornean terrestrial ecosystems and in
regional economies with global implications
in as yet unforeseen ways.
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